Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients
نویسندگان
چکیده
The sparse grid stochastic collocation method is a new method for solving partial differential equations with random coefficients. However, when the probability space has high dimensionality, the number of points required for accurate collocation solutions can be large, and it may be costly to construct the solution. We show that this process can be made more efficient by combining collocation with reduced basis methods, in which a greedy algorithm is used to identify a reduced problem to which the collocation method can be applied. Because the reduced model is much smaller, costs are reduced significantly. We demonstrate with numerical experiments that this is achieved with essentially no loss of accuracy.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملA Kernel-based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients
This paper is an extension of previous work where we laid the foundation for the kernel-based collocation solution of stochastic partial differential equations (SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian noises. In the present paper we show that kernel-based collocation methods can be used to approximate the solutions of high-dimensional elliptic partial differe...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کامل